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THE ENVIRONMENT

Near-Earth space is a complex, dynamic environment. The energies,
densities, and constituents of the natural orbital environment vary with position
(attitude, latitude, longitude), local time, season, and solar activity. The
presence and activities of space systems modify many of the natural environment
constituents (such as neutral particles and plasmas) so that the local environment
may be quite different from the natural one. The local environment will interact
with the system, its subsystems, surfaces, and structures. The impact of these
interactions on the system must be assessed to ensure successful operation.
Effects of the environment on the surface and structural materials play a crucial
role in determining system function, reliability, and lifetime.
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THETERRESTRIALSPACEENVIRONMENT

The terrestrial space environment comprises manyfactors, each of which can
have important effects on space systems. These effects must be accounted for to
ensure successful designs. This chart summarizesthe natural environment factors
(debris is included, though not truly a "natural" factor, because it is important
and not generated by the system being considered) and their effects, and notes
the importance of system-generated components. The "enhanced" or threat
environment is noted for completeness, but it is not considered further here.
Manyof the effects listed are materials related. It is the environment factors
associated with these effects on which we nowfocus. These are solar radiation,
meteoroids and debris, neutral atmosphere, plasmas, trapped radiation, and
system-generated contaminants. In what follows, each of these environments is
overviewed briefly. More details will be found in the individual "environment"
sections of the Workshop's focus sessions.
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THESOLARSPECTRUM

This chart gives an overview of the solar spectrum, from the gammaray out
to the far infrared. Some99.5%of the Sun's radiant energy is in the 1200Ato
I0 pmwavelength (2.5 x 10-15 - 3 x 10-13 Hz) range. The flux levels in the
visible and near-ultraviolet (UV) are relatively stable, whereas those in the
extreme ultraviolet (EUV), X, and gammaray region are highly variable and
dependon solar activity.
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SOLARIRRADIANCE

The solar irradiance spectrum in orbit in the UVthrough IR range is well
approximated by black body radiation for a T = 5762°-K object.
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METEOROID ENVIRONMENT

Meteoroids are an obvious potential source of mechanical damage to
spacecraft materials. Total mass influx of meLeoroids is estimated as
I0 I0 gm/year. Average velocity of meteoroids is considered in the models to be
20 km/second and density is considered to be approximaLely .5 gm/cm 3 for
cometary meteoroids and approximately 2 gm/cm 3 for asteroidal ones. The figures
show one-year average estimates of cumulative number fluxes from various sources.
In modeling this environment, N is taken to be of the form N = Const/mm where m is
a slowly varying parameter of order unity (see right-hand figure).
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METEOROID IMPACTS

Estimates of frequency of meteoroid impacts can be made using formulas given

in NASA SP-8013 and SP-8042. These models are old but are still used for design.

NASA SP-8013 GIVES COMETARY METEOROID FLUX N AT IAU AS:

LOGIo N: -14.37 -1.213 LOGIo M i0-6_ M _I00

LOGIo N: -14.34 -1.584 LOGIoM -0.063 (LOGIoM) 2 10-12__ M_10 -6

N = # OF IMPACTS OF MASS M GP_MS AND LARGER PER SQUARE METER PER SEC.

_LTIPLY BY DEFOCUSING FACTOR G
e

EXAMPLES:

M(GM) NIAu(m-2s-l)

1 3.9x10 -15
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AND EARTH SHIELDING FACTOR S(_)
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[SEE ALSO NASA SP-8042 "METEOROID DAMAGE ASSESSMENT", 1970]
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DISTRIBUTION OF DEBRIS IN EARTH ORBIT

This chart shows a representation of the distribJtion of debris in Earth
orbiL. The "ring" is at geosynchronous. Sources of debris include spent stages,
nonfunctional spacecraft, fragments from staging operations, exploded stages,
collision, disposed wastes, and residues from engine burns•
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CLOSER VIEW OF DEBRIS DISTRIBUTION

A closer view illustrating the relative uniformity of debris distribution
in low Earth orbit (LEO}. Density of the debris falls off at altitudes >1500 kin.
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ORBITAL DEBRIS MEASUREMENTS COMPARED TO METEOROID FLUX

This shows a comparison of meteoroid and debris fluxes for various particle

diameters. Debris is a more serious threat than meteoroids at the small and large

extrema. Data on debris fluxes in the l-mm to l-cm diameter range is lacking.
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NEUTRAL ATMOSPHERE

Atmospheric pressure and density decrease rapidly in suborbital regions
(_200 km_, while kinetic temperature increases. At orbital altitudes, the
residual atmosphere is tenuous enough to be essentially collisionless.
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STANDARD ATMOSPHERE

The density, composition, and temperature of the residual atmosphere vary
with solar activity. In recent years the reactivity of atomic oxygen, which is
the dominant constituent of the residual atmosphere at LEO, has been recognized as
a serious threat to materials exposed to its ram flow. The motion of spacecraft
through the residual atmosphere in LEO at velocities of the order 7.5 to 8 km/sec
results in an equivalent impingement energy for 0 of 4.5 to 5 eV. Rapid
degradation of some materials in this environment has been observed on STS.
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ENVIRONMENTAL INTERACTIONS

Near-Earth plasma regimes include the cold (~.1 eV) relatively dense (to
-106/cm _} ionospheric plasmas whose densities aradually fall off with altitude;

the hot (~KeV to ~10's of KeV), tenuous (_l/cm 3) plasmas observed at

geosynchronous and associated with geomagnetic substorm activity; and the fluxes

of hot electrons due to these geosynchronous plasma injections which travel down

magnetic field lines and precipitate in the auroral zones. The latter two plasma

environments can charge spacecraft surfaces to kilovolt potentials; the cold

ionospheric component interacts strongly with spacecraft power systems.

NEAR EARTH PLASMAS

1,,_ SYNCHRONOUS

uj- ORBIT '" !_!,'C" L

lO'bl/\ \ ', ,, _:_:!;

PLASMAIO' 1 j ,z /

NUMBER I _ \: _,_'.:',;.F, , "k,T 't

ALTITUDE, km vl..

IONOSPHERIC

PLASMAS

GEOSYNCHRONOUS

MODEL SUBSTORM

AURORAL PLASMAS

HIGH LATITUDES

ORIG/NAL PAGE IS

OF POOR QUALITY

17



PLASMA DENSITY AND COMPOSITION IN THE IONOSPHERE

Plasma density and composition in the ionosphere vary daily, seasonally,
latitudinally, and with solar activity, as is illustrated in these figures.
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tion

DIURNAL VARIATION IN ION

This figure illustrates the diurnal
for solar maximum at mid-latitude.
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GEOSYNCHRONOUSPLASMA ENVIRONMENT

This figure shows histograms of the occurrence freQ.encies of the electron

and ion temperatures and current at geosynchronous orbit measured by Applications
Technology Satellite (ATS)-5 and ATS-6. T(AVG) is two-third's the ratio of

energy density to number density; T(RPIS) is one-half the ratio of particle energy

flux to number flux.

The hot plasmas were observed to charge the ATS-5 and ATS-6 spacecraft to

kilovolt potentials in eclipse and to hundreds of volts in sunlight. Similar
charging effects are anticipated for large spacecraft in auroral zones at LFO.

The DMSP spacecraft (900 km) has been observed to charge to approximately 700
volts during auroral passage. Charging potentials are negative because electron

fluxes dominate the process.
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TRAPPEDRADIATION: THEVANALLENBELTS

This figure shows VanAllen's first mapof the radiation belt, showing the
inner and outer zones of high count rate. The contours are labeled by the count
rate of a Geiger counter of about 1 cm2 area covered by 1 gm/cm2 of lead,
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Trapped radiation
Data Center (NSSDC).

NSSDCTRAPPEDRADIATIONMODELS

models are available from the National Space Sciences
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SYSTEMGENERATEDENVIRONMENT

The system-generated environment is system-specific and maybe quite
complex. It is generally considered to be the main source of contaminants which
can impact the system.
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SUMMARY

The orbital environment is complex, dynamic, and comprised of both natural
and system-induced components. Several environment factors are important for
materials. Materials selection/suitability determination requires consideration
of each and all factors, including synergisms amongthem. Understanding and
evaluating these effects will require ground testing, modeling, and focused flight
experimentation.
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MATERIALS SELECTION/SUITABILITY DETERMINATION REQUIRES CONSIDERATION OF ALL FACTORS
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